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Final Report: Contract AFOSR-91-0375 

Several important projects were completed. The practical use of the numeri- 
cal methods of stochastic control for the design of modern telecommunications 
systems has been well demonstrated. Efficient and versatile codes have been 
written and fully documented, and are publically available on the internet. To 
get them, go to Applied Math, Brown University at www.dam.brown.edu, then 
click on the Lefschetz Center, then go to reports (to get the documentation and 
sample problems) and to software (to download the codes). The documentation 
is included with this report. 

The applications were very successful, and presentations were made before 
appropriate industrial groups. It is a pity that the work could not be refunded, 
since much momentum had been built up for further important demonstration 
problems in new areas of telecommunications and for further dissemination of 
the ideas in industry. The techniques which were developed and used were 
shown to provide a powerful approach to the design of many systems, often 
yielding results which are much better than what would otherwise be possible. 
They are a clear demonstration of the role that modern numerical stochastic 
control can play in industrial problems. The codes are of much wider use, since 
they solve a large class of optimal stochastic control problems, with discounted 
or ergodic cost criteria, or with stopping when a target set is reached. 

One class of applications were numerical methods for controlled and op- 
timally controlled multiplexing systems, a fundamental ingredient of modern 
high speed communications systems. In this system, there are many users, with 
variable bit rates, competing for a single channel. Unless the capacity is so 
wastefully large that the channel can handle the maximum load, either control 
mechanisms must be used or large losses accepted. Control is needed to use 
the available resources effectively. The desirable overload losses ore of the or- 
der 10~~6 or less. Our systematic numerical exploration yields much new and 
sometimes unexpected information of importance for design and which could 
not have been obtainable with other available methods. The relative simplicity 
of our approach allows us to see key dependencies more clearly, and greatly 
simplifies the problem of computation of good controls. The general framework 
covers many types of control strategies, including the marking and selective 
(feedback dependent) deletion of lower priority cells, and/or the adaptive use 
of additional bandwidth. The numerical method which is used is known as the 
Markov chain approximation method. 

There is a robustness in the approximations which are used. Crude ap- 
proximations can often be reliably extrapolated to get good results for larger 
systems. The data gives a thorough exploration of the value of optimal control, 
the great savings which it gives, the form of the control or decision regions, the 
dependence on the parameters of the problem, and the sensitivity of the per- 
formance to approximations of the control. Many of the results are somewhat 
surprising. A plot of the optimal losses vs. the buffer sizes shows a surprising 
linearity which can be exploited to get results where the probabilities of loss 



are extremely small, a matter of importance in applications. We obtained the 
shapes of the control or decision regions and their variations as the systems 
data varies. The structure is often surprisingly simple. Such facts are useful 
for design, when considering the possible tradeoffs among the various types of 
losses, and were well appreciated by the audiences. 

The sensitivity to system data, robustness with respect to data uncertainties 
and system structure, as well as the use of the basic ideas for constrained prob- 
lems (e.g., minimize delay, given a loss level) were all investigated and it was 
shown how our techniques provide all of the needed information. An application 
to simple networks of such systems demonstrated that the optimal controls can 
be well approximated by controls depending only on local data, a fact that is 
crucial in applications. 

Another major applications project concerned the routing problem for large 
systems of the trunk line type. Owing to the large investment in and size of 
such systems, much effort has been expended on this problem. Our approach 
provided simple designs that were as good as or better than anything currently 
available. The only (occasionally) better alternative is much harder to imple- 
ment. Here too, presentations were made before appropriate industrial groups. 

The codes that are publically available provided all of the numerical data 
for these problems. 
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Abstract 

This report documents codes for the numerical solution of control 
and optimal control problems for diffusion or reflected diffusion mod- 
els in dimensions two to four and for continuous time Markov chain 
control problems where the state space of the chain is a grid in such 
a Euclidean space. The control appears linearly in the dynamics and 
cost function but otherwise the process and cost function are general. 
The underlying numerical methods use efficient forms of the approx- 
imation in policy space and multigrid type methods, based on the 
Markov chain approximation method of [7]. 



1    Introduction 
Numerical methods of stochastic control have been successfully applied in 
many areas. The further use of these-techniques requires the availability of 
easy to use and flexible codes, which can be adapted to a variety of basic prob- 
lems. This report documents a set of codes which were developed originally 
for the numerical study of various problems in modern telecommunications. 
Those applications were quite successful [5, 8]. These references discussed 
a versatile numerical method for getting good approximations to queueing 
and multiplexing systems and getting optimal controls, and various simple 
approximations to them, as well as for experimenting with approximation 
schemes when the systems data are not well known. Much supporting nu- 
merical data was given and it was shown that the technique can be of great 
help in the design and analysis of systems. 

The codes developed for those applications are quite general in nature 
and can be applied to a great variety of stochastic control problems with 
diffusion or reflected diffusion type models. They can also be used for the 
solution of control problems for continuous time Markov chain models whose 
state spaces are regular grids in Euclidean space. 

This report is a documentation and user's guide to the codes for work- 
stations. The user must, of course, supply the data for the system and cost 
function of interest. The format will be discussed in detail in the report 
and will be illustrated by concrete examples. On the boundary of the state 
space, the process can be either reflecting or absorbing, as desired. The pro- 
gram can be used in many ways, as described in the sequel. The choices 
are indicated to the program by an options parameter, which is entered at 
run time. The options include various choices over the input and output. 
In many problems the cost function of interest is the sum of several terms. 
While one might want the optimum policy and cost for the total cost, the 
individual components of the cost are often of great interest as well. These 
can be evaluated under the optimal control. Additionally, one has the choice 
of not optimizing, but merely evaluating the cost (and its components) under 
a given control. Threshold controls are of great interest, and it is easy to 
use the code to evaluate performance under such fixed controls. In addition, 
the numerical solutions and controls can be saved for postprocessing analysis 
such as control curve plotting. More details are given in Section 3.6 which 
lists the run time options.   The flexibility offered by this method allows a 



wide range of problems to be computed with hopefully minimal effort. High 
performance machines such as the Cray C90 require (limited) modifications 
to achieve effective vector performance and reduced execution times. 

Efficient numerical solution techniques are used to get the various values 
of interest and the optimal controls. The original process and cost function 
are approximated by the versatile Markov chain approximation method. The 
basic numerical scheme then uses the approximation in policy space method 
for solving these approximating control problems. This approximation in 
policy space method generates a minimizing sequence of policies. For each 
such policy, there is a linear system of equations which must be solved, and 
this is the core of the computational burden. This system of equations rep- 
resents the cost function for a Markov chain control problem. Experience 
has shown that overrelaxed Gauss-Seidel iterations combined with multigrid 
methods work very well, and (generally) significantly reduce overall com- 
putation time. Multigrid use without overrelaxation also works well. The 
software allows the user to tailor the computations by specifying the number 
of multigrid sublevels and the overrelaxation parameter for each level. 

The basic diffusion model is discussed in Section 2. The description cen- 
ters around the process with reflecting boundaries since it is more compli- 
cated than the absorbing boundary case. For the reflecting boundary case, 
the cost can be either of the ergodic or discounted type. The details con- 
cerning the structure of the state space and the basic numerical methods are 
similar to those for the absorbing boundary problem, and the few changes 
and simplifications (adding the absorbing boundary cost and dropping the 
reflection terms and associated costs) are mentioned at the end of the sec- 
tion. The state space is a hyperrectangle in all cases. Section 3 is concerned 
with the definitions needed by the program, and the input data formats and 
the files which the user provides. The codes are very flexible, and the struc- 
ture was developed so that many types of problems could be accommodated. 
Section 3 also explains how to compile and run the program, and how to 
select the various options, as well as the possible outputs. A detailed exam- 
ple is provided to illustrate the procedure. Sections 4 and 5 contain other 
illustrative examples. The above examples are for the reflecting boundary 
case. An example for the absorbing boundary case is provided in Section 6. 
Section 7 deals with the continuous time Markov chain control problem. The 
procedure is essentially the same as for the diffusion model, except that the 
controlled transition rates must be defined. Section 8 contain an example of 



a continuous Markov chain problem with controlled transition rates. 

2    Process Model and Cost Function Descrip- 
tions 

The codes can be used for the numerical solution of optimal control problems 
where the underlying model is of the diffusion or reflected diffusion type in 
dimensions two to four and for the calculation of costs or cost functions associ- 
ated with given controls. They can also be used for the Markov chain models 
where the state space is a regular grid in a Euclidean space of dimensions 
two to four. In the next subsection, we describe the diffusion models. In all 
cases, the state space is a hyperrectangle G in Euclidean d—space, d = 2,3,4. 
The particular control problems which originally motivated the development 
of the codes arose in queueing or telecommunications situations, where the 
natural state space was often a hyperrectangle. In these applications, the 
states frequently correspond to (scaled) buffer or queue occupancies, and 
hence are non-negative. There are also physical upper bounds, which yield 
the upper bounds of the confining rectangle. The reflection directions on the 
boundary were determined by the physics of the flow within the network and 
were constant on each face of the hyperrectangle. The present code keeps 
the general structure, hence the state is confined to some hyperrectangle. 

To do numerical work, one needs to work in a bounded state space. If the 
basic state variables in a model do not have natural finite bounds, then they 
generally need to be bounded in some fashion, so that "finite" procedures 
can be used. The most common approach is the artificial (upper and lower) 
truncation of each state at some appropriately large values. To prevent the 
process form exceeding these values, one uses either a reflection or absorption 
on the boundary. One tries to select the boundary behavior such that it does 
not seriously affect the numerical data of most importance. Thus, even for 
general numerical problems, one might still wish to work with a state space 
which is a hyperrectangle, with appropriate boundary conditions imposed. 

The hyperrectangle state space is defined by 

G={x:X~ <xt<X?}, 

where Xf,X~ are real numbers. The cost function for the reflecting or 
absorbing boundary diffusion model is described below in the next subsection. 



2.1     Diffusion Models: Reflecting Boundaries 

Structure of the process model. The drift term in the diffusion can have 
an arbitrary dependence on the state x, but it is assumed to be linear in the 
control, and the covariance matrix is a constant. For the reflecting bound- 
ary case, the process is reflected "inwards" when it tries to leave G. More 
particularly, there are vectors pi, and qiy which are the reflection directions 
on the surfaces x{ = Xf and xt = Xf, resp. These are not necessarily unit 
vectors, and we will now explain how they are specified. Define the matrices 
P = {pi,... ,Pd}, Q = {<7i, ■ ■ •, Qd], where the p,-,# are the columns. Refer 
to Figure 1 which illustrates a two dimensional problem. Suppose that we 
are sitting at a point lona face of G and move out of G one "unit" in the 
direction orthogonal to the surface, and denote the new point by y. The 
Pi.qi are the vectors needed to return us to the face (hyperplane) on which 
x lies when we are at y and move in the desired reflection direction. The 
reflection direction depends on the face on which x lies, but not otherwise on 
x, i.e., they are constant on each face. This is the typical setup in problems 
which arise in queueing theory. For one example, let d = 3, and suppose that 
the face is defined by xa = X?. Then the direction vector q{ takes the form 
qi = (-l,g12,^i3), where y + qi is on the hyperplane defined by xx - X+. 
Note that the first component must be negative. If the hyperplane is defined 
by xi - A'f, then we have x = y+pi, where px = (l,Pi2,Pi3)- Note that the 
first component must be positive.   With this format, we must always have 

k.-j| < 1, \Pij\ < 1- 

The general form of the diffusion process can be written as 

dx = b(x, u(x))dt + adW + PdL + QdU. (2.1) 

The term b(x,u) is referred to as the "drift function." The drift is linear 
in u : b(x,u) — b(x) + Ku, where K is a matrix of real numbers, b(-) is 
continuous and u(x) is a feedback control with M real valued components 
u{x) = (UI(X),...,WM(X)), where 0 < M < 4. There are u{ such that 
0 < Ui(x) < ü{. The W(-) is a standard Wiener process (covariance matrix 
being the identity). The covariance matrix E = a a' is a constant. The L,U 
are vectors whose components Lj(•),£/,-(•),i = l,...,d, are non decreasing 
real valued processes: L(0) = U(0) = 0, and £;(•) can increase only at those 
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t where Xi(t) = X~, and £/,-(•) can increase only at those t where Xj(t) = X*. 
It is always assumed that b(x) and the direction vectors pi,qi satisfy what is 
required for the control problem to be well defined [7]. 

Figure 1. Reflection directions. 

The cost function.  For a continuous function &(•), define the "cost rate" 
in the form 

N M 

k(x, u) = Y, Ciki(x(t)) + J2 dUi(x(t)),    M < 4. (2.2) 

The cost function can be of either the ergodic or the discounted forms. In 
program usage, the c2-, C; are combined into the coefficients c(l), c(2), etc. For 
real numbers 1{,V{, define the ergodic cost function 

1      [2 

7(M) = \\m-E J k(x{t),u(x(t)))dt + J2 (UdLi(t) + VidUi(t)) 
i 

and the discounted cost function 

W(x,u) = E / 
Jo 

o-ßt k{x(t), u{x(t)))dt + J2 (UdLi{t) + VidUi(t)) 

(2.3) 

,   (2-4) 

where the initial condition is x(0) = x. 



Figure 2. Components of Reflection Directions 

Computing normalized "components" of optimal cost. In many opti- 
mization problems the cost criterion is the sum of several components. While 
the minimum value is important, the values of the components themselves 
might also be important. For example, in a queueing problem the total cost 
might be the sum of its components: one which measures delay and another 
which measures losses. It is worthwhile to know what the mean delay and 
the mean loss are, under the control which minimizes the sum of the mean 

values. 
Suppose that the optimal control and cost have been calculated. One 

of the options available in the program is the computation of the values 
associated with the components of the costs: the values of (2.3) or (2.4) 
with the optimal control used but with the individual components of the 
cost replacing the bracketed quantity in (2.3) or (2.4). For specificity, let us 
restrict out attention to (2.3). If computation of the cost associated with 
the components is requested (see below for instructions on how to make this 
request of the program), the cost due to all the individual L8, Ui in (2.3) with 
nonzero coefficients (/,-,«,-, resp.) will be computed (but with the coefficient 
li,V{ set equal to unity). Similarly, for the values of individual kz and u,- 
components, for all i such that a ^ 0 or c; ^ 0. The total number of nonzero 
values of Ci,Ci can be at most 3 * dim, where dim = dimensionality of the 
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model. 
The program has been designed to be flexible and easy to use. In order 

to allow for reasonable generality without excessive code complexity, the 
program has been organized so that the user supplies b(x,u) and k(x,u). 
This is done in a simple Fortran code, as will be seen in the examples below. 
The program contains numerous options from which the user can choose to 
tailor the computation to a particular problem. 

Comments on the numerical method. For the numerical solution, the 
diffusion model (2.1) with the given cost function is approximated via the 
Markov chain approximation method. See [6, 7] for discussion of the gen- 
eral method. The latter reference contains many applications, and details 
concerning approximations and numerical methods. At present, the Markov 
chain approximation method seems to be the method of choice for getting 
the optimal costs and controls as well as solving for costs under given con- 
trols for general stochastic control problems with diffusion or jump diffusion 
type models. Discussions of the actual approximation method for various 
multiplexing-type systems is in [8, 5]. 

The idea is to approximate (2.1) with cost (2.3) or (2.4) by a suitable 
controlled finite state Markov chain on a state space which is a "discretiza- 
tion" of G. With suitable choices of the chain and associated cost function, 
the value of the associated optimal cost approximates that of the original 
problem arbitrarily well. (Similarly, if the control is fixed.) The chain is 
parameterized by a parameter h (analogous to a finite difference interval) 
such that as h —► 0, the "local" properties of the chain resemble more and 
more closely those of the diffusion. The state space Gh of the approximating 
chain is essentially the regular /i-grid on G. (Actually, it is slightly larger, 
the total number of grid points being 

n?=1'[(^-Xf]/Ä)+3], 

with two of the extra points being associated with the "numerical reflecting 
boundary." The value of h is an input quantity, to be supplied by the user, 
as described below. 

Solution techniques. The approximating Markov chain control problem 
is solved by the approximation in policy space method [3, 7]. This method 
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works by getting a sequence of control policies with decreasing cost, until 
the convergence criterion is satisfied. To insure against pathologies, the user 
specifies the maximum number of policy updates allowed. For each control 
policy, one needs to get an approximate solution to the linear equation for 
the cost (discounted cost problem) or "relative cost" (ergodic cost problem). 
This is the main computational work. 

The user can specify one of several options for obtaining these approxi- 
mate solutions. The simplest method is by use of a Gauss-Seidel relaxation. 
The code allows the use of overrelaxation, which generally (but not always) 
provides faster convergence. The user specifies the number of relaxations per 
policy update as well as the overrelaxation parameter. To use this direct 
relaxation, set the "number of multigrid sublevels" input parameter to zero. 
Good values of the overrelaxation parameter are problem dependent, and the 
user must do a little experimentation. The best values tend to be slightly less 
than the value at which the algorithm becomes unstable. For the problems 
in [5], we generally used values in the range [1.1,1.25]. The range of good 
values tends to be similar for problems of similar structure, so good values for 
one member of a sequence of runs for closely related problems will generally 
be good for the other members. Assigning values of 1.0 to the overrelaxation 
parameters results in simple Gauss-Seidel iterations. 

There is also the option of a form of the multigrid method, which is 
generally faster [1, 2, 7], and which we use whenever possible. The number 
of multigrid sublevels (i.e., grid coarsenings) must be specified, up to a user 
determined maximum value supplied at compile time. The present default 
value is three. See Section 3.3 for more information about changing the 
maximum number of multigrid sublevels. If "number of multigrid levels" 
equals zero, then only a Gauss-Seidel procedure (overrelaxed, if desired) will 
be used, with no multigrid sublevels. Within each level of multigrid, the 
code uses Gauss-Seidel or overrelaxed Gauss-Seidel smoothings. The user 
must specify the number of relaxations and the overrelaxation parameter 
for each multigrid level, as well as the maximum number of multigrid cycles 
allowed. The code does a policy update at the end of each full multigrid cycle. 
Thus, the maximum number of policy updates is defined by the maximum 
number of multigrid cycles allowed. See [4] for a general introduction to the 
multigrid method, and [7] for a brief summary. The method was introduced 
into the stochastic control area by Akian and Quadrat [1, 2]. Note that the 
use of multigrid increases the required memory, up to at most twice what is 
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required without it. 
Program execution will stop when either the maximum number of control 

policy updates (or, equivalently, full multigrid cycles) has been reached or the 
(sup) norm of the difference between successive control updates has reached 
its desired value, whichever comes first. 

State space description. The hyperrectangle G is described in the follow- 
ing way. We work in terms of an "origin" of G, and the discretization level 
h. This approach simplifies the code. The user enters the number of grid in- 
tervals {Nf,Ni~} for the negative and positive directions from the problem 
origin for each of the coordinate directions i, as well as the discretization 
level h, and the location X0 of the origin of G. Thus X? = X0 + hNf. One 
can always select the origin to be, say, the "lower left hand corner" of G, in 

which case N~ — 0, all i. 
Some care must be exercised in choosing X0, N*, when there are multi- 

grid sublevels. Each successive sublevel of the multigrid procedure uses a 
state space or grid whose spacing is twice that of the previous higher level. 
Thus, if m denotes the number of multigrid sublevels desired, the user should 
ascertain that the [N? + N~]/[2% k = 1,..., m for each dimension i are all 
integers. If more multigrid sublevels are specified than are computationally 
consistent, then the program will reduce the number of levels which are to 
be used such that consistency is maintained. Without multigrid usage, the 
state space may be described using an odd number of mesh intervals in any 
or all the dimensional discretizations for evaluation by overrelaxation. 

Threshold and arbitrary controls. It is often desired to compute costs 
associated with a given control. The program can be used for this, since 
the user can input any desired control via an appropriately formatted data 
file. This control can be used in two ways. It can serve as the initial control 
of the policy updating routine. If a good initial controls were available, 
say from a previous run for related problem, this will save computational 
time. Alternatively, one can chose to have the entered control remain fixed 
throughout the computation, in which case the program will compute the 
values of the selected costs under that control. Input control is enabled 
using option 1 as described in subsection 3.6 and a brief description of the 
required format for the control input file is given in subsection 3.7. 

In many applications, a threshold type of control is of interest due to the 
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simplicity of its implementation. To facilitate the computation of costs under 
a threshold control, one need not write a file containing all the control values. 
All that one needs to do is to select the threshold control option and put in 
the appropriate threshold parameters with the other data. A description 
of the threshold control and its parametrization is given under option 16 in 
subsection 3.6. 

The values of the auxiliary or "relative cost function for the er- 
godic cost problem. With the Markov chain approximation method, the 
actual functions which are computed are costs for an approximating Markov 
chain problem (chosen by the program, using methods from [7]). In order 
to describe the quantities computed, it is useful to look briefly and formally 
at the Bellman equations for the control of a Markov chain with an ergodic 
cost function. Let k(x, u) be a cost realized by the chain when in state x and 
control u(x) is used. For the ergodic cost problem, the Bellman equation is 
[3, 7, 9] 

V(x) = min (2.5) ^Tp(x,y\a)V{y) + k(x,a) -7   , 
- y -I     ' 

where a varies over the set of allowed control values, and x,y vary over the 
points in the state space. 7 is the optimal average cost per unit time. The 
function V(x) is the "relative cost." For a fixed control u(-), the equation 
for the cost and relative cost W(x,u) is 

W(x,u) J2p(x,y\u(x))W(y,u) + k(x,u(x)) - -y(u) 1.6) 

where 7(1/) is the average cost per unit time. Most of the computational work 
consists in solving a sequence of equations similar to (2.6). The solutions 
V(-) or W(-,u) are not unique, since if any solution is modified by adding a 
constant, then that new value will also solve (2.5) or (2.6), resp. 

For the optimization problem, the program computes 7, the numerical 
approximation to the optimal average cost for the original problem (2.1), 
(2.3). One selects a "centering point, called Xc, discussed in more detail 
below, and the program computes the relative cost V(x) — V(XC). A value of 
Xc must always be chosen for the ergodic cost problem. The values V(x) — 
V(XC) can be saved in a file (option 1024, where the output file is called 
value.data) as can the values of the computed controls (options 1 and 512), 
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as discussed in the program options Section 3.6. Analogous comments hold 
for the computation of 7(1«), W(-,u) for the fixed control case. 

The centering point Xc. For the ergodic cost problem, the matrix P(u) = 
{p(x,y\u(x)),x,y} used in (2.5) and (2.6) is not a contraction and so the 
equation is solved slightly indirectly. The algorithm which is used takes ad- 
vantage of the non-uniqueness of the solutions V(x) and W(x, u) in (2.5) and 
(2.6), resp., to transform the equations into "contractions" by the selection 
of a "centering point" Xc. See [7, Chapter 7] for a detailed description of 
the method. The selection of Xc is critical for good numerical behavior and 
some experimentation might be required. Good locations for one problem 
are typically good for similar problems. Poor choices lead to poor numerical 
behavior (slow convergence), and possibly even non-convergence. The value 
should be a point that is (loosely speaking) "as recurrent as possible" un- 
der what is expected to be the optimal control. For example, it should not 
be in a corner which is visited infrequently relative to other points. Often, 
the problem has an inherent stability. For example, see (3.1), where a good 
choice for Xc = (^,1,2^,2) is xc<2 = 0 and xcJ being either zero or slightly 
positive. If there is a control or other dynamical force which pushes the path 
strongly out of a region, then Xc should not be located in that region. 

The discounted cost problem (2.4) with reflecting boundaries. For 
the discounted cost problem, one may specify a centering point Xc or omit its 
usage. This is a run time option. When the centering point option is used, 
the numerical algorithm utilized is similar to the one used for the ergodic cost 
problem discussed above. Care must be exercised with the choice of Xc since 
a good selection for it will result in faster convergence. In addition to the use 
of Xc in the algorithm, the program will compute V(XC) and V(x) - V(XC), 
with the latter being saved in a file if desired. The output was chosen in this 
way since one often uses small discount factors which lead to large values 
of the costs, but moderate values for the differences between the costs at 
different points. It seemed preferable to center the values and print the large 
value for a single point (namely, Xc) only. 

When the centering point option is not used (i.e., the centering point is 
not to be used in the numerical algorithm), the user must specify a sample 
point Xs at input time in lieu of the centering point. This is for "output" 
purposes only. The program outputs the value V(XS) and the user can also 
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save V(x) — V(XS) in a file (option 1024), if desired. The motivation for 
computing the differences of V(x) — V(XS) is the same as stated above. 

2.2    The Absorbing Boundary Problem 

For the absorbing boundary problem and a given continuous function &(■), 
the "cost rate" is defined in the form of (2.2). The cost function is then 
defined as 

W(x, u) = E I" e'ßi [k(x(s), u(x(s)))ds] + Et~ßTg{xr) (2.7) 
Jo 

where r = min{£ : x(t) £ G] and initial condition x(0) = x. 

3     Creating an Executable Program 

3.1     Program availability 

The source code is available on the World Wide Web from the Lefschetz 
Center for Dynamical Systems of Division of Applied Mathematics at Brown 
University's home page (http://www.dam.brown.edu/lcds.html). Viewers 
should select the "Software" link to access the software and documentation. 
The source code routines and example include files have been bundled to- 
gether with the Unix "shar" command into a single Unix shell archive file for 
distribution. Clicking on the highlighted "stochastic control software" link 
will initiate a file transfer of the bundled source code to the user. 

Once the file scmodels.shrl has been received by the user, the individual 
source files must be extracted from it. The command 

sh scmodels.shrl 

is the means by which the files are extracted from the archive file scmod- 
els.shrl. This command will create a directory called "sc_code" into which 
the individual source code files will be placed. Several subdirectories will 
also be created which contain the necessary example include files needed to 
construct the model programs described in this document. Any or all of 
the example programs may be compiled using the identical makefile sup- 
plied within each of the example subdirectories. The makefile provided with 
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the source code has been configured for Sun workstations and may require 
some editing for use on other machines. Reading the sample include files 
described in this report is probably the best method to familiarize oneself 
with the style and method of utilizing.the software. The sample include files 
can be copied and/or edited to construct an executable program for the the 
user-specific model. Comments, bugs, and suggestions should be directed to 
djarvis@dam.brown.edu. 

3.2     How to Define the Model 

We next describe the method of putting the actual model information into 
the general program, and then show how to run the program and select from 
among the many options. In order to provide maximum flexibility without 
an excessively complex code, the user must supply certain information in a 
fixed (but simple and reasonable) format. The specific features of the model, 
such as the drift b(x, u) and the k(x, u) part of the cost function, are supplied 
to the code through the use of Fortran "include" files which minimize coding 
work while allowing a reasonable flexibility of the general computational 
model. This user-supplied code should follow traditional Fortran standards, 
especially the fixed source code form requirement that statements must be 
within column positions 7 through 72. Although free format source code is 
accepted by many compilers, this model code uses a fixed form to increase 
portability. There are a total of thirteen "include" files for this software 
and three of these, userJiming.h, userJimevar.h, and userJimeout.h are 
used for optional program performance timing. The file userjprobs.h is used 
for the control problem when the original process of interest is a controlled 
Markov chain and not (2.1). See Sections 7 and 8 for an explanation of 
the continuous Markov chain problem and its implementation. Problems 
having absorbing boundary conditions require the use of user .boundary, h 
to describe the boundary function g(x). See Section 6 for details and an 
example. Otherwise, the remaining seven "include" files (listed first below) 
are used to completely describe a model of type (2.1) in software. Since most 
compilers will seek to incorporate the include files during the compilation 
process, all the include files should be present in the directory even if the 
files themselves are not being used (i.e., are empty) for the model. 

Fortran "include" files 
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• user_drift.h: specifies the drift function b(x,u) 

• user_cost.h: specifies cost k(x,u) 

• user_covar.h: calculations of covariance S for model, if any 

• user_var.h: user introduced variables in above files, if any 

• userin.h: input statements for user-introduced variables, if any 

• user_out.h: output statements for user-introduced variables, if desired 

• userinit.h: calculated constants or initializations for model, if any 

• user-timing.h: machine dependent Fortran timing function, if used 

• user_timevar.h: user introduced variable(s) for timing routine, if used 

• user-timeout.h: output statement(s) for timing data, if used 

• user.boundary.h: absorbing boundary function g(x), if used 

• user_kbdout.h: output statements for keyboard entered data, if desired 

• user.probs.h: transition probabilities for the Markov chain model 

There is a required notation for certain variables used in the "include" files 
because these files are incorporated directly into the code and the notation 
must be consistent. The list below describes these variables with a general 
outline of their basic usage. An explicit example then follows. Note that all 
but one of the provided variables are indexed with the user providing proper 
values for the maximum values of the indices in most cases. In the use 
of the control and cost variables, the index i is used as a system 
index and it must appear, and it must not be modified by the 
user. The index i represents the vector spatial index for a given point which 
the code varies over all the mesh points. The software uses vector indexing 
to represent the dimensional data in an explicit linear fashion in order to 
increase portability and performance. 

Fortran Variables with Fixed Notation 
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x(j), j=l, ..., dim: the components of the state vector x. 
The variables x(j) appear only on the right-hand side in the user's 
Fortran statement in explicit form as x(l), x(2), etc. 

u(i,j), j = l, .. •, M: M = number of controls, M < 4. 
The j-th control is denoted by u(i,j). The variable u(i,j) appears only 
on the right-hand side of statements in the user^drift.h file with the 
index j used. Index i represents the vector spatial index and must 
appear and must not be modified by the user. The code will iterate 
over this general spatial index. 

k(l,m), (l=l,...,dim is the coordinate, m=l,...,M is the control compo- 
nent): control coefficient matrix. 
This is the matrix K in the definition of b(x,u) in (2.1). Any input 
entry can be either positive or negative. The parameter k(l,m) appears 
only on the right-hand side of statements in the user^drift.h file. But 
all entries k(l,m) of the matrix K must be assigned at data input time, 

even if their values are zero. 

drift. 
In usage, this variable will be embedded within a dimensionally depen- 
dent if-statement which is indexed by the variable j. See the examples. 
This variable appears only on the left-hand side of statements in the 

user-drift.h file. 

cov(l,m), (l,m = l,...,dim): symmetric covariance matrix S. 
User-supplied input values or Fortran statements to assign covariance 
values to the specified model. This file is needed only if the user wishes 
to represent the covariance in terms of other parameters. This file 
gives the formulas relating them. If the covariance input values are 
simply a set of numbers, then the file can be left empty and the values 
inserted with the other data at run time. See the example below. For 
uncorrelated covariance (S is diagonal) only the diagonal elements need 
to be supplied. In the case where the covariance is not diagonal, only 
the nonzero upper tridiagonal values are to be supplied. The program 
will directly assign the lower diagonal covariance matrix elements from 
the specified upper triangular elements to assure that the matrix is 
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symmetrical. The variables cov(l,m) appear only on the left-hand side 
of statements in the user^covar.h file and all indices must be specified. 

• c(l), 1=1, ..., 3*dim: cost coefficients. 
This is the set of Cj-,ct- in (2.2). The variables c(l) appear only on 
the right-hand side of statements in user-cost.h file with all indices 
specified. By convention, we assume that the number of control cost 
coefficients equals the number of controls and that the control cost 
coefficients appear first in use. 

• cost(i): defines the cost components for k(x,u). 
Variable to which model dependent cost formula is assigned. Again, 
index i represents the vector spatial index and must appear but not 
be modified by the user. The code will iterate over this general spa- 
tial index. The variable cost(i) appears only on the left-hand side of 
statements in the user-cost.h file. 

• value(i): defines the absorbing boundary cost at a calculated vector 
boundary index. This variable appears only on the left-hand side of 
statements in the user -boundary .h file. 

• xmin(j), j = l, ..., dim: the minimum boundary value for dimension 
j, as evaluated by the software. This variable appears only on the 
right-hand side of statements in the user -boundary .h file, if needed. 

• xmax(j), j = l, ..., dim: the maximum boundary value for dimension 
j, as evaluated by the software. This variable appears only on the 
right-hand side of statements in the user-boundary .h file, if needed. 

For the continuous time Markov chain model described in Sections 7 and 8, 
the user will also have to define the controlled transition rates r(x,y\u(x)). To 
facilitate this feature, additional system-defined variables are made available 
and must be assigned appropriate values. Refer to Sections 7 and 8 for more 
information. 

Example. In order to illustrate the use of the include files and the conven- 
tions for utilizing both system-provided and user-defined variables, consider 
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the following two dimensional problem, which originally arose as a heavy 
traffic limit to a multiplexer problem [8, 5]. 

dXl(t) = {vx2{t) -a)dt- u^dt + dWx(t) + dLi(i) - dUx{t) 

dx2(t) = -(A + (i)x2(t) dt + dW2(t) + dL2-dU2. 

The covariance matrix is diagonal with elements <r(l,l) = 0 and cr(2,2) = 
2 A ///(A + n). For this model, the drift and covariance are written in terms 
of other parameters: (i,i>,\,a. For computational purposes, a specific value 
of er(2,2) can either be entered directly as an input quantity or evaluated 
by the code from the other model parameters if desired. In this example, 
we will evaluate the covariance values via the "include" file to illustrate the 
appropriate coding procedure. 

Define the ergodic cost for the problem as: 

rT rT 

-y(u) = \im-E 1U1(T)+ f   c(l)Ul(s)ds+ [   c{2)x1(s)ds 
Jo Jo 

(3.2) 

The "include" and data files. The user can compile one of two versions of 
the program for entering data. In the "silent" version, no message prompts 
for data are produced by the program. There, the user prepares an input file 
which contains all of the required data in the order specified below. In the 
other version, called the "prompted" style, the program "asks" the user to 
enter the necessary system variable data in the prescribed order by producing 
data message prompts. The STDERR descriptor for the WRITE statements 
in the file userJn.h below is used for the "prompted" input version. It assures 
that the particular message prompts supplied by the user will be written to 
the monitor screen for entering the data for the variables of the problem as 
the program sequences through its input statements. 

An additional feature of the "prompted" program version is its creation 
of a file named input.prompted with all the entered system data values. 
A complete file record of inputs will be created if the file user-kbdout.h 
includes the necessary WRITE statements using the KBD output descriptor 
to write the input data, for user-introduced variables to the file. The file 
input.prompted could then used directly as an input file for a subsequent run 
of the program. Each execution run of the "prompted" version of the code 
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overwrites an existing input.prompted file so it is the user's responsibility to 
save any previous input .prompted files of interest. 

For this example, we will assume that the "prompted" version of the code 
will be compiled by the user. The "include" files supplied by the user would 
be as written follows: 

• user_drift.h: 

if( j .eq. 1 ) then 

drift = nu*x(2) - a + k(l,l)*u(i,l) 
else 

drift = - (lambda + mu) * x(2) 
endif 

Comment: The j-th component of the spatial variable is always referred 
to as x(j). The variable j is used by the code to select the appropriate 
dimension for the drift evaluation and must appear. In this example, 
there is only one control and and it is denoted by u(i,l), as required. 
As noted above, the index i must appear as given above for proper 
indexing of the control. 

• user_cost.h: 

cost(i) = c(l)*u(i,l) + c(2)*x(l) 

Comment. Note that the parts of the cost dealing with the reflection 
terms L and U are not included here. Since their structure is fixed, 
their weights /;,t>; are entered with the other parameters. Again note 
the required use of index i in the control variable u(i,l). Otherwise, 
all indices appearing in the cost evaluation have been specified by the 
user. 

• user_covar.h: 

cov(2,2) = 2.*lambda*mu / (lambda + mu) 

Comment: In this example, the only nonzero covariance value is given 
in terms of other parameters, and the code above specifies the func- 
tional dependence.   If the covariances were simply a set of given real 
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numbers, then this file would be left empty, and the covariance values 
would be entered at run time together with the other problem data. 
Unless the user uses this include file to explicitly evaluate a covariance 
value, the input covariance values entered at run-time are used. If a 
particular covariance value is computed in this include file and is also 
entered as data at run time, the form used in this include file will be 
the one used by the program. 

user.var.h: 

real lambda, mu, nu, a 
common lambda, mu, nu, a 

Comment: In this file we list the "user-supplied" parameters which 
were introduced in the above files. Values for these variables can be 
entered with the other data at run time by means of READ statements 
or can be assigned by the user in the userJnit.h file. If there are no such 
parameters, then this file will be empty. The program does not use au- 
tomatic typing of variables so all introduced variables must be defined 
without exception. Compiler complaints about undefined variables will 
follow if this rule is ignored. The code is designed to use 64-bit floating 
point precision in its calculations for improved numerical accuracy. All 
real (i.e., floating point) variables for a given model should be typecast 
as simple Fortran REAL unless some specific need arises for another 
precision. For example, the variables used in Sun workstation timing 
functions require 32-bit precision. See the comments which accompany 
the userJimevar.h file usage for additional example information. 

By using the "precision neutral" REAL type specification, the provided 
makefile will supply the appropriate compiler option to specify that all 
REAL variables are to be 64-bits in precision. The distinct advantage 
of linking the default Fortran REAL variable typing with the 64-bit 
precision compiler option is that code portability is enhanced since no 
assumption is made with respect to the default number of bits used 
by REAL Fortran variables on a computational platform. This re- 
solves the portability and maintenance problems that using DOUBLE 
PRECISION declarations pose since this results in 64 bits on many 
workstations but 128 bits on high-performance computers such as the 
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Cray C90. 

• userJn.h: 

write(STDERR,*) 'lambda mu im a ?' 
read(5,*) lambda, mu, nu, a 

Comment: This file provides the necessary statements for reading data 
into the variables which the user has introduced for the model. The 
inclusion of the write statement is for the case where the user desires 
prompted keyboard messages for data input. See the next section for 
more on the use of STDERR with write statements. If no such prompt- 
ing is desired, omit the write statement. 

• user_out.h: 

write(6,*) 'lambda = ', lambda 
write(6,*) ' mu = ', mu 
write(6,*) ' nu = ', nu 
write(6,*) ' a = ', a 

Comment: To document the executed problem, this file allows the user 
to provide output statements to print variable values of interest which 
have been supplied to describe the model. The manner and style in 
which this data is printed is left to the user. 

• userJnit.h: 

Comment. This illustrative example does not require any variable ini- 
tializations so the userJnit.h file would be left empty. To demonstrate 
how this file might be used, suppose that we have a model with a cost 
defined by k(x,u) — (b / N) A/Q g(x,u), where b, Q, and N are in- 
put parameters that might vary from run to run and g(x,u) is some 
function. We may reduce the execution time by writing k(x,u) = M 
g(x,u), and calculating M only once: 

M = (b / N) * sqrt(Q) 
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where M, b, Q, and N have been declared as REAL Fortran variables 
in the file user.vars.h. Recall that REAL variables will be cast with 
64-bit representation at compile time. Additionally, users may directly 
assign values to their model dependent variables in this file. 

• user-timing.h: 

time = dtime(t) 

Comment. The "dtime" function is used on Sun workstations for tim- 
ing purposes. The variables associated with the function as well as the 
function itself must defined for the code. For computational platforms 
other than Sun, check local documentation for the vendor-specific tim- 
ing function call. See below for the proper declarations of the timing 
variables and the function itself. 

• user_timevar.h: 

real*4 t(2), time, dtime 
common /time/ t, time 

Comment. The particular timing function and its variables are defined 
for the code. The Sun function "dtime " and its associated variables 
require 32-bit single precision real variables. To enforce this precision 
we use the REAL*4 declaration. The REAL*4 declaration informs 
the compiler that the defined variables and the function "dtime" are 4 
bytes (i.e.. 32 bits) in precision. Note that the function name "dtime" 
is omitted from the Fortran COMMON statement since it is not a 
variable. 

• user_timeout.h: 

write(6,*) 'Program time = ', time(l)+time(2), ' sees' 
write(6,*) ' user time = ', time(l), ' sees' 
write(6,*) ' system time = ', time(2), ' sees' 

Comment. Print the results of the timing calls for the program. In this 
example, the full output of the timing calls will be printed as specified 
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by the Sun function "dtime". Otherwise, the style and format of the 
output is left to the individual user. 

• user_kbdout.h: 

write(KBD,*) lambda, mu, nu, a 

Comment: This file provides the necessary statements for writing user- 
supplied data to the output file which is always called input.prompted 
and which is created when the user compiles the code for prompted 
input. The data should be written in the same order as it is read 
into the program. Perhaps the simplest way to generate this include 
file is by changing all the READ statements in the userJn.h file to 
WRITE statements which use the KBD descriptor. Otherwise, the 
style and format of the output is left to the individual user. Note 
that the descriptor KBD is used to direct the output to the default 
file and must be used for all WRITE statements. If the program has 
been compiled without keyboard prompting then omit the WRITE 
statements, leaving this include file empty. 

Since the parameters are input at run time, the proper sequence for en- 
tering the data will be deferred until we have discussed the compilation pro- 
cedure.. 

3.3     Compiling and running the program 

The UNIX software tool "make" is used to compile and generate the ac- 
tual executable program. The "make" command is directed by the included 
makefile in compiling and linking the general source code routines into the 
specified program with as little user intervention as possible. Thus the user 
is relieved of both typing and remembering the compilation commands and 
options. The whole compilation and link process will be apparent to the 
user since "make" explicitly describes its progress as it executes. Table 1 be- 
low lists the appropriate commands to issue in order to construct the listed 
program. 

The "Input mode" column in table 1 represents the user's preferred style 
of entering the problem data.   A program compiled with the "Prompted" 

24 



Command Program Input mode Dimension 

make 2d sctrl2d Silent Two 

make 3d sctrl3d Silent Three 

make 4d sctrl4d Silent Four 

make 2dask sctrl2dask Prompted Two 

make 3dask sctrl3dask Prompted Three 

make 4dask sctrl4dask Prompted Four 

Table 1: Compilation choices for the control code 

input mode will issue a sequence of prompts, at each of which the user will 
enter the appropriate data for defined system inputs. If users desire program 
prompts for their introduced variables then users must provide the necessary 
WRITE statments, as described in the previous section. The "Prompted" 
input mode will also save all system and introduced variables input data in 
a file named input.prompted for future reference. (This assumes that the 
user has supplied the necessary WRITE statements in the file user.kbdout.h 
to output the introduced variable data.) In the "Silent" input mode, the 
program quietly awaits input from either the keyboard or a file and no de- 
fault input file is created. For either program version, output is directed (by 
default) to the terminal but may be saved by redirecting it to a file in Unix 

fashion, as illustrated below. 

Note: Due to global variable dependencies and memory layout, it is neces- 
sary to utilize the "make clean" command if successive runs are for problems 
of different dimensions. 

Example. As an example, consider the case where the user desires to ex- 
periment with a three dimensional model. First, let the input mode be 
"prompted." The user would type the command 

make 3dask 

to generate the prompted three-dimensional program. [The programs for 
two- and four-dimensions are created similarly.] Once the "make 3dask" 
command has been given, the source code will be compiled. The successful 
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compilation and linking creates the program named "sctrl3dask," which is 
the one to be executed by the user. Simply running 

sctrl3dask 

will cause the program to query the user for necessary parameter data, save 
those inputs in the default output file input.prompted and send the results to 
the terminal screen. [This file (perhaps modified by the user) can be used on 
a subsequent run as an input file, to save time.] Alternatively, by running 

sctrl3dask > user.output 

the user can save the program output in the file user, output while still in- 
putting data at the program prompts. This command creates (or overwrites) 
the output file user.output. The output file contains the problem parameters, 
stopping data (number of cycles, etc.) and the numerical solutions. The user 
can also input data from a file and save the output by running 

sctrl3dask < input.data > user2.output 

thus directing data from the file input.data to the "sctrl3dask" program and 
saving (i.e., redirecting) the output from the terminal to the user-named file 
user2.output. This is the preferred method of entering data, especially when 
using the "silent" (i.e., unprompted) program versions, since it is the quickest 
and allows the user to verify input data before it is entered and used by a 
program. Issuing the command 

make clean 

command removes the previously created "include" files (those suffixed with 
a .h) and compiled object files (suffixed with an .o) thereby cleaning out 
these old files to avoid any possible global memory confusion, and saving 
disk space as well. 

The software package has been extensively tested within its Sun SparclO 
workstation development environment but it is possible that compilation 
problems will appear when the code is ported to other machines. Such prob- 
lems are usually the result of local system features such as the Fortran com- 
piler name and library function names. System error messages can be very 
helpful in determining the nature of the difficulty.  If the user is unable to 
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resolve a compilation problem, it is suggested that help be secured from local 
support personnel or more experienced Fortran users. 

Important default settings. There are three important default settings 
at compilation time which the user should carefully review. The first setting 
to note is the maximum number of multigrid sublevels allowed. The present 
default value allows three multigrid sublevels (three levels of multigrid refine- 
ment). Experience has demonstrated that two or three multigrid levels tends 
to result in the shortest execution time for a program. This default value 
may be altered by changing the defined GRIDS value in the included makefile 
to the new maximum number of levels desired. Any number is possible, but 
the number is an upper bound to what can be entered as the "number of 
multigrid sublevels" (the actual numer to be used in the compiled program) 

in the data input. 
To allow prompted input messages to appear for keyboard data entry 

when the program output is being redirected to a file, the program writes 
these messages to Fortran standard error output unit (the monitor). On the 
Sun Sparc 10, this is Fortran unit 0. Since this definition of the standard 
error output unit may be vendor dependent, this value may be altered by 
changing the defined ERR_OUTPUT parameter in the makefile. The value 
assigned to the ERR-OUTPUT parameter will be inherited by the STDERR 
output descriptor used by the WRITE statements for issuing of error and 
warning messages as well as interactive keyboard prompts, if used. See the 
vendor's Fortran documentation for the appropriate local standard error unit 
value. As a practical matter, if the prompted data input program is used 
and the messages don't appear on the monitor screen, then the value for 
ERR-OUTPUT is probably incorrect. 

The third default setting is the parameter MAXJBITS. This value rep- 
resents the highest order bit value for machine integer representation and it 
is hardware dependent. By default, the parameter MAXJBITS is set to 31 
since the Sun workstation on which the software was developed and tested 
uses 32 bit integers. For most workstations this value of MAXJBITS will be 
sufficient since the 32 bit integer representation is the one most commonly 
used. On a high performance machine such as the Cray C90, the value of 
MAXJBITS would be set to 63 since the standard machine word length of 
a full integer is 64 bits. 
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3.4    Program inputs 

As noted above, the input data can be entered either from the keyboard 
or from an existing file. The data is read by the program without format 
restrictions but it must be entered in the order specified below, and using 
the data types as documented below. Failure to use proper data types may 
result in erroneous results. 

The stopping criterion tolerance represents the maximum absolute dif- 
ference for the finest mesh between successive policy updates or between 
successive full multigrid cycles if the control is not updated. A fairly small 
value for this parameter should be chosen (e.g., 10-6 — 10-9). 

Values for the "run time options" input parameter are described further 
in the next subsection. The following input description is for the reflecting 
boundary case, for either the ergodic or the discounted cost function. Recall 
that if the cost is of the discounted type, then there is the option of not using 
the centering point Xc in the numerical algorithm. Even if the option of not 
using the centering point in the computation is elected, then an input value of 
Xc is still needed, since the output is given in the form V{XC), V(x) — V{XC). 

General input data order and data types. 
Reflecting Boundaries 

• dimension of state variable (integer =d) 
• Number of mesh intervals (N{, Nf),..,, (Nj, Nf)). d lines, (integers) 
• Number of multigrid sublevels (integer) 
• Number of controls (M < 4) (integer) 

Non-diagonal covariance matrix? (integer: if 0 then NO, else YES) • 
• h, mesh interval width (real) 
• Origin of the state space (real) Ä'o 
• Value for run-time options (integer) [See Section 3.6 for full details] 
• Centering point value Xc (real) 
• Covariance values: upper triangular (real) 

d lines: (<r(l, 1),..., <T(1, d)), (<r(2,2),..., <r(2, d)),..., (a{d, d)) 
Note: This data line is still needed, even if the include file user^covar.h 
is used. Any calculations defined in user-covar.h will overwrite the cor- 
responding values entered at input time. 

• Drift control coefficient matrix K (real: d x (No. of controls) matrix) 
This entry has d lines containing (kitl,..., &I,M"), • • •, (&d,i? • • • •> &d,Af)- 

• Maximum values of the controls üi,..., UM (real: no. of controls) 
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• Number of nonzero cost coefficients (number of nonzero C{,Ci in (2.2), 
called c(i) below) (integer) 

• Cost coefficients values c(l),..., (real) 
• User-supplied model inputs, if any [In the example, these are A, //, u, a] 

The number of lines used is specified by the input statement 
• Cost coefficients for underflow Zl5..., Id (d real) 
• Cost coefficients for overflow ux,..., Vd (d real) 
• Underflow boundary reflection values, (real: d times d) d lines, con- 

taining pi,..., pd 
• Overflow boundary reflection values, (real: d times d) d lines, contain- 

ing <?i,..., qd 

• Discount factor ß (real; 0. = no discounting) 
• Maximum number of policy updating steps (integer) 
• Stopping criterion tolerance (real) 
• Number of relaxations to be done for each multigrid level (integers) 
• Overtaxation factor for each multigrid level (reals) 
• Threshold values (real, integer: no. of controls) These inputs are read 

only if the threshold option (option 16) is selected. See Section 3.6 
for specifying this option. There are M lines, corresponding to the M 
controls. With the threshold control option, the i—th control takes the 
value üi if some specified state component equals or exceeds a given 
real number. Otherwise the i—th control takes the value zero. The 
i—th. line is (real, integer), the integer being the state component, and 
the real number is the threshold level. If some control is never to be 
active, set the threshold level large. 

3.5     Parameter Inputs: Example 1 Returned 

We now show how the parameters are put in, either via a file or via the mon- 
itor and keyboard. For any prompted program version, all data entered from 
the keyboard will be written to a default output file named input.prompted 

which is created by the program. 
The first six inputs, which are dimension, number of mesh intervals, num- 

ber of multigrid sublevels, number of controls, and the indicator that there is 
a non-diagonal covariance matrix allow the program to determine the amount 
of memory which is to be allocated for the problem. This tailoring of memory 
usage for a problem allows efficient memory management for larger memory 
problems as well as improving data locality for reducing execution time. 
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Given below is a sample input file for the two-dimensional problem (3.1), 
(3.2). Note that the comments to the right of the numerical values (beginning 
with an "!") have been added to clarify as well as demonstrate typical input 
data. In actual usage, no comments will appear in the input files. The run- 
time options value 2564 used in the example assures that all components of 
the cost will be calculated, the final controls with their spatial locations will 
be saved in a file, and the progress of the calculation will be sent to the output. 
The example in the next section (Section 3.6) shows how this particular value 
has been computed. Also, note that any component of the covariance which 
is entered both below and calculated in the user-cov.h include file will take 
the value calculated by the include file, since such calculations take place 
after input. 

Sample input file for 2D model (3.1) and cost (3.2). 

2 
0 16 
32 32 
2 
1 
0 
0.1154700538 
0. 0. 
2564 
0.1154700538 0. 
0. 
0. 
-1. 
0. 
0.4 
2 
1. 0. 
0.2 1. 1. 0.48 
0. 0. 
200. 0. 
1. 0. 
0. 1. 
-1. 0. 
0. -1. 
0. 
150 
0.00000001 
5 55 
1.2 1.2 1.2 

program dimension 
number of mesh intervals (iVf, N* 
number of mesh intervals (Ar^", N2 

number of multigrid sublevels 
number of controls 
non-diagonal covariance matrix (0 if false) 
mesh width h fa 1/V75 
origin of the state space X0 = (0.,0.) 
run-time options 
location of centering point Xc = (h,0.) 
covariance value <Tn 
covariance value a22 
control coefficient k(l,l) in drift eqn for x(l 
control coefficient k(2,l) in drift eqn for x(2 
maximum control value ü\ 
number of cost coefficients c(j) 
values for cost coefficients c(j) 
X /j, v a 
underflow cost coefficients: {h,h} 
overflow cost coefficients: {v1,v2} 
Pi, dimension 1 underflow reflection 
p2, dimension 2 underflow reflection 
<7i, dimension 1 overflow reflection 
q2, dimension 2 overflow reflection 
discounted cost factor 
maximum policy updating steps 
stopping criterion tolerance 
number of relaxations per multigrid level 
overrelaxation parameter for each level 
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3.6     Program options 

At its simplest, the program solves the optimal control problem for the spec- 
ified data. This is option 0. But the program can be used for other purposes. 
These are indicated by the options parameter in the input data. The user 
selects the options from the following list, adds the values of the option indi- 
cator, and uses this in the options input line. All option values are based on 
powers of 2 so that there is no ambiguity in interpreting the sum of the values 
of the individual options. In all cases the user is required to specify an option 
value as part of the input data. So to solve the optimization problem only, 
set the run-time option to 0. Otherwise calculate the desired option value, 
as described below. See Table 2 for a summary of the run-time options. 

By the "components of the costs," we mean the costs with the indi- 
vidual Ui(-),Li(-),Ui(-), ki(-) used for all terms with nonzero cost coefficients 
Vi, /,-, ct-, Cj, resp. These costs associated with the components are not weighted 
by the cost coefficients, i.e., the appropriate nonzero cost coefficients are set 

to unity. 

Program options: Selected at run time. 

• Option = 0 directs the program to solve the problem for the optimum 
system cost. 

• Option = 1 directs the program to save the final computed controls as 
output files. These could subsequently be used as control input files 
for another run where a cost is to be evaluated with a fixed control 
and some specified cost function. The number of files created equals 
the number of controls. For each control Uj, the program creates an 
output file control.].data which contains the values of Uj at the grid 
points. See subsection 3.7 for a description of manner in which the 
grid points are traversed. 

• Option = 2 directs the program to read input control data from an 
existing file or files. This option is used when we wish to either eval- 
uate the costs for a given control or else start the policy updating 
method from a given control. The input file or files must be named 
controlJ.data, where J = 1,...,M < 4. The input control will be 
used as the initial control in the policy updating scheme unless the "no 
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control updating" option 32 is also specified. This option is generally 
used for controls that were computed and saved at a previous run, in 
particular a run where option 1 was used. 

Option = 4 directs the program to explicitly compute all cost compo- 
nents (for which the weights are non-zero) for the problem once the 
optimal control problem has been solved. This is done with the con- 
trol fixed at its value at the final iteration. This option is important 
for getting full use out of the data. Generally, the components of the 
optimal costs (with weights set to unity) are as important as the op- 
timal cost itself. For example, see [5], where one would generally like 
to know what the actual mean buffer overflow, mean control loss and 
mean buffer waiting time are for the given optimal control or an a-priori 

given control. 

Option = 8 directs the program to evaluate only the cost components 
for the specified system with the control fixed. (It does not compute an 
optimal control.) Combine with option = 2 or option = 16 if nonzero 
control values are desired. Otherwise a "zero" control will be used. 
The control used will not be updated. 

Option = 16 directs the program to use a given threshold control when 
evaluating system cost. This option requires additional inputs for the 
threshold levels See the discussion under "program inputs." Data for 
this option is entered last of all in the input sequence. There is no 
control updating under this option. It is included simply because in 
many applications one wishes to compute performance under standard 
simple controls, and to compare the costs to that under the optimal. 
With other options, we allow arbitrary controls to be used, either be- 
cause we wish to know the performance under them or because we wish 
to start the policy updates with some given "good" control. This op- 
tion 16 facilitates this process when the control is of a simple threshold 
type. Under this option, the control is held fixed through the program 
execution (no policy updating). 

Option = 32 directs the program to do no control updating. If this 
option is used alone (or with option 4), then the program computes the 
cost for the zero control. It also computes each of the components of the 

32 



• 

• 

cost, with unity weights. When this option is used in conjunction with 
option = 2, the control control remains fixed as read from the input 
file throughout the program's execution. Note that when the control 
is not updated, the variable "maximum number of policy updates" is 
the maximum number of total multigrid cycles allowed, so it is still an 
important parameter. 

Option = 64 directs the program to omit the centering point in eval- 
uating the cost and its components. This cannot be elected for the 
ergodic cost function. This option might be enabled for the reflect- 
ing boundary case with the discounted cost function. The absorbing 
boundary problem (option 128) does not use the centering point. A 
sample point location Xs is still required input for the problem for 
output purposes. 

Option = 128 is used when the cost function is for absorbing boundary 
Since there are no reflection directions for this model, the number of 
required inputs is reduced. No centering point Xc is used for this 
model by default. A sample point location Xs is still required as input 
for the problem since the output is given as V(XS). If option 1024 is 
also specified then V(x) - V(XS) will be output. See Section 6 for an 
example. 

Option = 256 is used when the initial model is defined as a controlled 
Markov chain, not as a reflected diffusion process. See Sections 7 and 8 
for a more complete description of the specifics for this option. 

Option = 512 is used mainly when we wish to keep the control data 
for postprocessing, such as plotting. The option directs the program to 
create an output file of the final control data which includes the spatial 
coordinates, as well as the associated control values. The output file 
is named control.data. For each spatial coordinate, the corresponding 
control is listed. See subsection 3.7 for a more complete description of 
the file organization. 

Option = 1024 directs the program to create a output file of the final 
value (cost or relative cost) data which includes the corresponding spa- 
tial coordinates. The output file is named value.data. For each spatial 
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coordinate, the corresponding value is listed. See subsection 3.7 for a 
more complete description of the file organization. 

Option = 2048 informs the user of the program's progress through the 
solution process. One output line per policy step is produced showing 
the present policy update cycle number, the l^ norm and Euclidean 
/2 norm of the differences between the current cycle and the last, the 
value of the system cost at the current iteration, and log10 of this cost. 

Option Function 

0 calculate optimal cost and control 
1 write final control data 
2 read input control data 
4 calculate optimal cost and cost components 
8 calculate only cost components 

16 use threshold control 
32 no control updating 
64 no centering point 

128 absorbing boundary conditions problem 
256 user-supplied probability updating code 
512 write final control and spatial data 

1024 write final value and spatial data 

2048 report computation progress 

Table 2: Program run-time options 

Suppose that a user wants to compute the cost and its components for 
a given model, save the final computed optimal control for review and post- 
processing, and also survey the algorithm's progress as it solves a model. 
Enabling the program's run-time options for full system component evalua- 
tion, output spatial and final control values, and computation progress will 
accomplish these goals. (These options were exactly the ones specified for 
use in the input data for example 1.) For these options, the user adds the 
specified option values and assigns the parameter a value of 2564. That is, 
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options   =     calculate cost +  compute cost components 

+ save final control data + iteration progress 

=   0 + 4 + 512 + 2048 = 2564. 

is the parameter for the desired options. Thus, the program allows the user to 
tailor the execution of the program to further the desired research goals. The 
user, of course, should exercise discretion when selecting options. For exam- 
ple, if the "no control updating" and "save spatial and final control values" 
options are specified, then the program creates the output file control.data 
that contains only zero control values. In the situation where conflicting 
options are specified (i.e., options 2 and 16), the program selects the for- 
mer option and ignores the latter. If input control files are specified for use 
(option 2) but do not exist, the program will issue a complaint and stop exe- 
cution. Appropriate program option choices allow the user to wisely manage 
the program direction, data collection, and associated system resources. 

3.7    Program Output 

As the program is executed, output is directed to the terminal. To save 
this output information, the user need only redirect the output to a file, as 
illustrated in the example in Section 3.3. The program output consists of 
three basic parts: program type and options, input parameter values, and 
computed results. The program type and options informs the user of the 
dimensionality and mesh configuration of the problem as well the selected 
options used by the program, if any. All input parameters are printed by 
the program to allow verification of the input data by the user. Finally, the 
output prints the results of the calculations. If the computation progress 
option 2048 has been selected, the output will contain an active account of 
the progress of the multigrid method for solving the problem. One key item 
of information is whether or not the program terminated before achieving 
the desired precision. If the program seems to be unstable, decrease the 
overrelaxation factors. If it has not achieved the desired precision, but seems 
stable, increase the maximum number of allowed policy updates and/or the 
number of relaxations. User experience is the best guide when assigning these 
parameters. 
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The output files for final control data, spatial and control data, and spatial 
and value data (specified by program options 2, 512, and 1024, resp.) are 
written in a standard row/column format. For the output file options which 
include the spatial data, each line of the file contains the coordinates of a 
specified point in the space and the value of the cost or controls at that point. 
Under option 1024, the sequence of data for each line of such a file is the 
spatial position x = (#i,... , £d), and the the associated cost value at that 
point. Under option 512, the value of the M controls appears in lieu of the 
cost value. 

The output is written beginning with the least-valued point in the space 
and the space is traversed in the following standard way. Start with x = 
(xi,..., Xrf), where each £; is at its lowest value, Then increase X\ until the 
right boundary is reached. Then increment x2 by a unit, return x,\ to its 
lowest value and repeat, Continue until x2 reaches its maximum value. The 
increment x$ by a unit and repeat and so on until all points are reached. 

When option 1 is selected to save the control data, no spatial data is 
written but the physical space is still traversed in the same manner. Control 
data computed by other programs for input to this program must use the 
same data output scheme if the assignment of the input control is to be done 
correctly. 

Furthermore, all input control files must have the total number of mesh 
points used at the finest level for the problem as the first line of input. Thus, 
input control data files created by other programs must likewise include it. 
This value is used as a consistency check for the model grid. 

4    Example: 2-D correlated noise model 

We now give another illustrative example, where the Wiener processes are 
correlated. The system equations are 

dXl(t) = (-A aji(«) + n x2{t)) dt + dW^t) dt 

dx2{t) = (A - A0) Xi(t) dt-(fi + Mo + A0) x2(t)) dt - ui(s) dt + dW2(t) dt 
(4-1) 

with covariance matrix 

Axi + ßx2 — (Axi -f fix2) 
-(Aii + f*x2)     (A - A0)xi + (// + no - \Q)X2 + A0 
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where 
 Mo  

\(po + Ao) + A0ju' 

and 
_   _ A Ao 

A(/-o + Ao) + A0// 

The cost function is 

lim ]-E I   [c(l)«i(s) + c(2) max[0, x2(s) - B]] ds. (4.3) 
T   T    Jo 

The user supplied include files follow. 

• user _drift.h: 

if( j .eq. 1 ) then 
drift = -lambda*x(l) + mu*x(2) 

else 
drift = (lambda-lambdaO)*x(l) - (mu+mu0+lambda0)*x(2) 

k + k(2,l)*u(U) 

endif 

Comment: In this example, the drift equations have one control which 
is denoted by u(i,l). Since there is no control variable in the first 
equation but only in the second equation, the input values for {k(l,l), 
k(2,l)} would be {0., -1.} in this model. The equations are dimension- 
ally indexed by the variable j as required. 

• user_cost.h: 

cost(i) = c(l)*u(i,l) + c(2)*MAX(0., x(2)-B) 

Comment: This cost description utilizes the Fortran "MAX" function 
to extract the nonnegative component of x(2)-B. The reflection cost 
terms L and U have a fixed structure so their weights /,-,Uj are again 
entered as run time data. 
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• userinit.h: 

xlb = (mu*lambdaO) / (lambda*(muO + lambdaO) + lambdaO*mu) 
x2b = (lambda*lambdaO) / (lambda*(muO + lambdaO) + lambdaO*mu) 

Comment: Evaluate xlb and x2b once for the duration of the program's 
execution. These values will be used in the user-.covar.h file as part of 
the covariance calculations. 

• user_covar.h: 

cov(l,l) = lambda*xlb + mu*x2b 
cov(l,2) = -(lambda*xlb + mu*x2b) 
cov(2,2) = (lambda-lambdaO)*xlb 

& + (mu + muO - Iambda0)*x2b + lambdaO 

Comment: Compute the covariance terms from the specified user pa- 
rameters. Note that the term cov(2,l) is not evaluated. The code 
will assign the value of cov(l,2) to the term cov(2,l) as it executes to 
assure that the covariance matrix is symmetrical. The lower diagonal 
covariance elements always receive their assigned values from the corre- 
sponding symmetrical upper triangular elements to assure symmetry. 
The character "&" which appears in the second covariance equation 
description is placed in column 6 for Fortran statement continuation, 
according to Fortran 77 convention. 

• user_var.h: 

real lambda, mu, lambdaO, muO, B, xlb, x2b 
common lambda, mu, lambdaO, muO, B, xlb, x2b 

Comment: The variables which we have introduced for this model are 
declared and typed. 

• userJn.h: 

write(STDERR,*) 'lambda mu lambdaO muO B ?' 
read(5,*) lambda, mu, lambdaO, muO, B 
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user_out.h 

write(6,*) 'lambda = ', lambda 
write(6,*) 'lambdaO = ', lambdaO 
write(6,*) ' mu = ', mu 
write(6,*) ' muO = ', muO 
write(6,*) 1 B = ', B 
write(6,*) ' xlb = ', xlb 
write(6,*) ' x2b = ', x2b 

Comment: Files user An. h and user „out.h are the means by which we 
enter data to the code and output it for our specific model variables. 

• user_kbdout.h: 

write(KBD,*) lambda, mu, lambdaO, muO, B 

Comment: This file provides the necessary statements for writing user- 
supplied data to the default output file input.prompted by utilizing the 
KBD descriptor for the WRITE statements. 

Below an example input file for the two-dimensional model is given. Note 
that the comments to the right of the numerical values (beginning with an 
"!") have been added to clarify as well as demonstrate typical input data. 
In actual usage, no comments appear in input files. 
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Sample input file for 2D correlated noise model 

2 
63 95 
63 127 
1 
1 
1 
0.0316227766 
0. 0. 
516 
0. 0. 
0. 0. 
0. 
0. 
-1. 
1. 
2 
1. 500. 
0.5 1. 0.1 0.2 2. 
0. 0. 
0. 0. 
1. 0. 
0. 1. 
-1. 0. 
0. -1. 
0. 
1500 
0.00000001 
5 5 
1.1 1.1 

program dimension 
number of mesh intervals (iVj-, Ar

1
+) 

number of mesh intervals (N2 ,N£) 
number of multigrid sublevels 
number of controls 
non-diagonal covariance (0 if false) 
mesh width h ss l/\/1000 
origin of the state space XQ 

run-time options 
location of centering point Xc 

covariance values for o\\ and <r12 

covariance value for <r22 
control coefficient k(l,l) for drift eqn 1 
control coefficient k(2,l) for drift eqn 2 
maximum control value ü\ 
number of cost coefficients c(j) 
values for cost coefficients c(j) 
X // A0 no B 
underflow cost coefficients: l\,l2 
overflow cost coefficients: t>i,t>2 
Pi, dimension 1 underflow reflection 
P2, dimension 2 underflow reflection 
<7i, dimension 1 overflow reflection 
</2, dimension 2 overflow reflection 
discounted cost factor 
maximum policy updating steps 
stopping criterion tolerance 
number of relaxations per multigrid level 
overrelaxation parameter for each level 
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5    Example: 3-D problem 

Here is another example, which arose in a study of a multiplexer with two 
user classes under heavy traffic [5]. The systems equations are: 

dx-i(t) = {uix2{t) + v2x3{t) - a)dt — (ui(s) + u2(s)) dt 
+dW2{t) + dW3(t) + dL(t) - dU(t) (5.1) 

dxj(t) = -\\j-i + fij-i)xj{t)dt + dWu-iit), j = 2,3. 

The W'n(-), Wi2(-), W2(-) and W3(-) are mutually independent Wiener 
processes with variances 

E[W2(l)r = (f^~ + f^) ,    E[W3(l)f = v*EW2(l) 
yXj + ni    A2 + /X2/ 

£[HVi(l)J   =-: — ,   .7 = 2,3. 

We define ^[^(l)]2 = E[W2{1))2 + E[W3(l)}2. For vx and c(i) non-negative, 
we use the stationary cost: 

EvxU(\) + E    i Yjc(i)ui{s)+ f c(3)Xl(s)ds   . 
y° ,=1 J° 

The threshold control option will be used for this problem. 

• user_drift.h: 

if( j .eq. 1 ) then 
drift = nu(l)*x(2) + nu(2)*x(3) - a 

k + k(l,l)*u(U) + k(l,2)*u(i,2) 
elseif( j .eq. 2 ) then 

drift = - (lambda(l) + mu(l)) * x(2) 
else 

drift = - (lambda(2) + mu(2)) * x(3) 
endif 

Comment:  Here the model uses two controls u(i,l) and u(i,2) in its 
drift equations.   The necessary vector index i appears as required, as 
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well as the dimension index j. The first drift description statement is 
continued to the following line by the use of the "&" character which 

is placed in column 6. 

• user _cost.h: 

cost(i) = c(l)*u(i,l) + c(2)*u(i,2) + c(3)*x(l) 

• user_covar.h: 

cov(l.l) = (s2 + 1.0) * 
k ( nu(l)*b(l)*lambda(l) / (lambda(l) + mu(l)) 
t + nu(2)*b(2)*lambda(2) / (lambda(2) + mu(2)) ) 

cov(2,2) = 2.*lambda(l)*mu(l)*b(l) / (lambda(l) + mu(l)) 
cov(3,3) = 2.*lambda(2)*mu(2)*b(2) / (lambda(2) + mu(2)) 

Comment: The evaluations for the covariance terms which are used 
in this model. Recall that the program could read the numerical val- 
ues directly from input if the user so desired, in which case the file 
user-covar.h would be left empty. 

user -var.h: 

real lambda(2), mu(2), nu(2), b(2), a, s2 
common lambda, mu, nu, b, a, s2 

Comment: We define and type the variables which our Fortran descrip- 

tion of the model utilizes. 

• user_m in.h: 

write(STDERR,*) 'lambda(l) mu(l) nu(l) b(l) ?' 
read(5,*) lambda(l), mu(l), nu(l), b(l) 
write(STDERR,*) 'lambda(2) mu(2) nu(2) b(2) ?' 
read(5,*) lambda(2), mu(2), nu(2), b(2) 
write(STDERR,*) 'a ?' 
read(5,*) a 
write(STDERR,*) 'sigma**2 ?' 
read(5,*) s2 
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• user_out.h: 

write(6,*) 'lambda{l,2} = ', lambda(l), lambda(2) 
write(6,*) ' mu{l,2} = ', mu(l), mu(2) 
write(6,*) ' nu{l,2} = ', nu(l), nu(2) 
write(6,*)'b{l,2} = ',b(l),b(2) 
write(6,*) 'Heavy traffic constant a = ', a 
write(6,*) 'sigma**2 constant = ', s2 

Comment: Allow the input of values for the introduced variables and 
output their values for reference by the program. 

• userJkbdout.h: 

write(KBD,*) lambda(l), mu(l), nu(l), b(l) 
write(KBD,*) lambda(2), mu(2), nu(2), b(2) 
write(KBD,*) a 
write(KBD,*) s2 

Comment: This file provides the necessary statements for writing user- 
supplied data to the default output file input.prompted by utilizing the 
KBD descriptor for the WRITE statements. 

Below an example input file for this three-dimensional model is given. Note 
that the comments to the right of the numerical values (beginning with 
an "!") have been added to clarify as well as demonstrate typical input 
data. In actual usage, no such comments appear in input files. Note again 
that although the an are specified, they may be overwritten by the calcula- 
tions given in the user.cov.h include file. The reflection directions for this 
model are normal to the surface faces. 

3 
0 16 
32 32 
32 32 
2 
2 

Sample input file for 3D multiplexer model 

dimension of state 
number of mesh intervals (N± , N*) 
number of mesh intervals (iV2~, N£) 
number of mesh intervals (N^, N£) 
number of multigrid sublevels 
number of controls 
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0. 

0 
0.05 
0. 0 
564 
0.05 0. 0. 
0. 
0. 
0. 
-1. -1. 
0. 0. 
0. 0. 
0.2 0.4 
3 
2.5 5. 1. 
0.4 2. 1. 
0.4 1. 1. 
0.48 
0. 
0. 0. 0. 
10. 0. 0. 
1. 0. 0. 
0. 1. 0. 
0. 0. 1. 
-1. 0. 0. 
0. -1. 0. 
0. 0. -1. 
0. 
50 
0.00000001 
3 5 5 
1.2 1.2 1.2 
1.4 2 
1.5 3 

0.5 
0.5 

off-diagonal covariance matrix (0 if false) 
mesh width h = 1/V20 
origin of the state space XQ 

run-time options 
location of centering point Xc 

covariance value an 
covariance value <r22 

covariance value «733 
drift eqn 1 control coeffs k(l,l), k(l,2) 
drift eqn 2 control coeffs k(2,l), k(2,2) 
drift eqn 3 control coeffs k(3,l), k(3,2) 
maximum control values ü\ and ü2 

number of cost coefficients c(j) 
values for cost coefficients c(j) 
Ai n\ v\ h 
A2 \i2 v-i b2 

heavy traffic constant a 
sigma**2 constant 
underflow cost coefficients: h,h,h 
overflow cost coefficients: Vi,v2,v3 

Pi dimension 1 underflow reflection 
p2 dimension 2 underflow reflection 
p3 dimension 3 underflow reflection 
qi dimension 1 overflow reflection 
q2 dimension 2 overflow reflection 
q3 dimension 3 overflow reflection 
discounted cost factor 
maximum policy updating steps 
stopping criterion tolerance 
number of relaxations per multigrid level 
overrelaxation parameter for each level 
control 1 threshold: active if x2 > 1.4 
control 2 threshold: active if x3> 1.5 
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6    Example: absorbing boundary problem 

The following example of a two dimensional control problem with an ab- 
sorbing boundary will illustrate how the program is used for this case. The 

system is 
dXl(t) = (vx2(t) -a)dt- U!(s)dt + dW^t), 

dx2\t) = -(A + fi)x2{t) dt + dW2(t). 

The covariance matrix is diagonal with elements c(l,l) = 0 and <x(2,2) = 
2 A ///(A + fi). The (undiscounted, ß = 0) cost is 

W(x,u) = E /Tc(l)ui(s)ds + /  c(2)a:i(s)<k 
Jo Jo 

+ Eg{xT), 

where r = m\n{t : x(t) £ G. The boundary cost g(x) is constant on the set 
where x^ = A'x

+, it equals x\ + x\ where x2 - X2 and it equals |xi + x2\ 

elsewhere. 

• user_drift.h: 

if( j .eq. 1 ) then 
drift = nu*x(2) - a + k(l,l)*u(i,l) 

else 
drift = - (lambda + mu) * x(2) 

endif 

Comment: No changes for the drift equations from the earlier multi- 
plexer example. 

• user_cost.h: 

cost(i) = c(l)*u(i>l) + c(2)*x(l) 

Comment. Note that the part of the cost dealing with the absorbing 
boundary described by g(x) is not included here because its structure 
is fixed. Otherwise, the cost rate k(x,u(x)) is the same as we used in 
the 2D multiplexer example. The control variable includes the index i 
as required in all models. 
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• user_covar.h: 

cov(2,2) = 2.*lambda*mu / (lambda + mu) 

Comment: The evaluation of the nonzero covariance is the same as in 
the 2D multiplexer example. 

• user_boundary.h 

if( x(l) .eq. xmax(l) ) then 
value(i) = xlbcost 

elseif( .x(2) .eq. xmax(2) ) then 
value(i) = x(l)**2 + x(2)**2 

else 
value(i) = ABS( x(l) + x(2) ) 

endif 

Comment: We assign the respective costs to the absorbing boundary 
as required by our function g(x). The spatial values Xj of each bound- 
ary point are available for use as well as the maximum and minimum 
boundary values for each dimension j (xmax(j) and xmin(j), respec- 
tively). Note the required use of the vector index i with the value 
array. The values for the xmax and xmin arrays are strictly local to 
the absorbing boundary evaluation routine and cannot be utilized else- 
where. 

• user_var.h: 

real lambda, mu, nu, a, xlbcost 
common lambda, mu, nu, a, xlbcost 

Comment: In addition to the variables used for the drift and covariance 
terms of the multiplexer model, the variable "xlbcost" is introduced 
for assigning a constant cost to the x\ overflow boundary. 

• userjn.h: 

write(STDERR,*) 'lambda mu nu a ?' 
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read(5,*) lambda, mu, nu, a 
write(STDERR,*) 'xl overflow cost constant ?' 

read(5,*) xlbcost 

• user_out.h: 

write(6,*) 
write(6,*) 
write(6,*) 
write(6,*) 
write(6,*) 

lambda = ', lambda 
mu = ', mu 
nu =   , nu 
a ^   , a 
xl overflow cost constant = ', xlbcost 

Comment: The input and output statements for this model again allow 
the input and output of user-defined variables needed in describing the 

model. 

• user_kbdout.h: 

write(KBD,*) lambda, mu, nu, a 
write(KBD,*) xlbcost 

Comment: This file provides the necessary statements for writing user- 
supplied data to the default output file input.prompted by utilizing the 
KBD descriptor for the WRITE statements. 

Given below is a sample input file for the two-dimensional absorbing bound- 
ary problem. The principle difference for inputs to this type of problem is 
that there are no overflow and underflow cost coefficients and no boundary 
reflections terms. In general, the input file will require two less input lines 
for the overflow and underflow costs and (2*dim) fewer input lines for the 
boundary reflections. Hence, this 2D absorbing example has deleted six lines 
associated with the boundaries which appeared in the 2D reflecting case. 
As before, comments have been added for descriptive purposes and do not 
appear in actual input file usage. 
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Sample input file for 2D absorbing boundary model 

2 
0 16 
32 32 
9 

1 
0 
0.1154700538 
0. 0. 
644 
0.1154700538 0. 
0. 
0. 
-1. 
0. 
0.4 
2 
1. 3. 
0.2 1. 1. 0.48 
200. 
0. 
150 
0.00000001 
5 55 
1.2 1.2 1.2 

program dimension 
number of mesh intervals (TV-f, N±) 
number of mesh intervals (iV2

-, 7V2
+) 

number of multigrid sublevels 
number of controls 
non-diagonal covariance matrix (0 if false) 
mesh width h « 1/y/lb 
origin of the state space X0 = (0.,0.) 
run-time options 
location of sample point Xs — (h,Q.) 
covariance value a\\ 
covariance value 022 
control coefficient k(l,l) in drift eqn for x(l) 
control coefficient k(2,l) in drift eqn for x(2) 
maximum control value ü\ 
number of cost coefficients 
values for cost coefficients 
A jjL v a 

absorbing boundary cost for x\ overflow 
discounted cost factor 
maximum policy updating steps 
stopping criterion tolerance 
number of relaxations per multigrid level 
overrelaxation parameter for each level 

7     Continuous Time Markov Chain Control 
Problems 

The previous discussion concerned control problems for diffusion type models 
such as (2.1). Since the basic computational method involves approximation 
by appropriate controlled Markov chains, it is natural that the codes can be 
effectively used on problems that are posed originally as control problems on 
Markov chain models. The basic details are the same for the reflecting and 
the absorbing boundary cases. The main discussion will be for the reflect- 
ing boundary case, and then the few required alterations for the absorbing 
boundary will be given, as for the diffusion model. 

48 



The structure of the state space is the same as discussed for the Markov 
chain approximations in Section 2. It is an A-grid Gh on a d- dimensional 
hyperrectangle G = U^=1[X~, X^}, with each point communicating only to 
its immediate neighbors, to be further described below. The value of h is an 
input parameter. We assume the following boundary behavior, analogous to 
what was used for (2.1). If a point is on the boundary and tries to move out of 
Gh, then it is immediately reflected back with the mean reflection directions 
being described as they were in Section 2, by the vectors /?,-, qi,i = l,...,d. 
Indeed, this behavior fits many continuous time Markov chain models which 
arise in telecommunications applications. 

For each point x € Gh, the behavior is defined in terms of controlled 
transition rates r(x,y\u(x)), where y varies over the neighbors of x. The rates 
are linear in the controls and there can be up to four controls, exactly as in 
Section 2. Let e, denote the unit vector in the i-th coordinate direction. 
Then, for x £ Gh- the rates for movement along the coordinate axes are 

written as 

M 

r(x, x + eih\u) = --rt{x)+Y.ktnu 

r(x x — eih\u) = 
M 

/ = !,...,<*,        (7.i; 

/ = !,...,d, (7.2) 
m=l 

with analogous formulas for the "off-coordinate axes" rates such as r(x,x + 
eih + emh\u(x)) which the user will define in the include file userjprobs.h, 
as illustrated below. One significant difference between this type of model 
and the diffusion model is that the parameters kfm are not system-defined 
variables. Thus, the user must either use explicit constants for all the cost 
coefficients in the file user_cost.h, or else define an array into which will be 
put input data for these variables.   As in Section 2, there are ü; such that 

0 < Ui(x) < Ü;. 

The cost function. For the diffusion model case with a reflecting bound- 
ary, the cost (2.3) or (2.4) was specified as the sum of two components: a 
component due to the reflection and one due to a cost rate k(x, u(x)). For the 
continuous time Markov chain problem, the cost is still defined as the sum 
of two components.  The component due to the cost rate k(-) is as in (2.3) 
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and (2.4). The cost associated with boundary reflections, is of course ac- 
crued only when the process attempts to leave the state space and must be 
returned by a reflection. As in the diffusion case, the user will input data 
for the overflow and underflow costs, as well the reflection directions. The 
reflecting boundary cost structure differs from what was used in the diffusion 
case in the following way: the inputs U1 U{ are now the actual cost increments 
associated with a reflection step, according to the boundary on which the 
reflection occurs. 

Transitions in "off-coordinate axes" directions. We now describe the 
format for the transition rates in 'off-coordinate axes directions" such as 
r(x,x + t\h + emh\u).l < m. In all such expressions the arguments for each 
vector pair {e/,eTO} will be written in lexicographic order, i.e., / < m. The 
Markov chain approximation to the model (2.1) involved such transitions 
only if the covariance matrix were not diagonal [7]. Recall that one of the 
data entries told the program whether the covariance matrix was diagonal 
or not. Suppose that d = 2, and o\2 > 0. Then the transition probabilities 
for the Markov chain approximation for the diffusion model satisfy p(x,x + 
e-[h + e2h\u) > 0, p(x,x — e\h — e2h\u) > 0, but for the transitions for the 
other directions, we have p(x, x + t\h — e2h\u) = 0, p(x, x — e\h + e2h\u) = 0, 
and conversely if aX2 < 0. For the current Markov chain model, we use a 
similar structure (so that the same code can be used). Thus, for d = 2, 
either the {r(x,x + t\h + e2h\u), r(x,x — t\h — e2h\u)} can be nonzero or 
{r(x,x + exh — e2h\u), r(x,x — e\h + e2h\u)} can be nonzero. For general d, 
for each pair / < ???., either {r(x, x + eih-\- emh\u), r(x, x — e\h — emh\u)} can 
be nonzero or {r(x, x + e\h — emh\u), r(x, x — eih + emh\u)} can be nonzero. 

The choice of the directions ("northeast, southwest" or "northwest, south- 
east") is specified by using the covariance matrix used for the diffusion model. 
The covariance itself has no meaning for this continuous time Markov chain 
model. But the signs of the off-diagonal (the upper triangular) a^m will 
be used to indicate the directional choices, as follows. Thus, if there are 
off-coordinate transitions possible for the chain, then for the "nondiagonal 
covariance matrix" line in the input data, write 1. The signs of the sym- 
metrical off-diagonal a\m determine the allowed directions. The input values 
for the off-diagonal <7/m, / < m, can be any values, provided only that their 
signs are correct. For example, if the directions {e/ -f em, —1\ — em} are to 
be selected, then <T/m > 0, and conversely if {e/ — eTO, —t\ + em} are to be 

50 



selected then o\m < 0. The input values for the diagonal an are unimportant 
so they can be any non-negative number. 

Defining the transition rates. The formulas for the transition rates are 
provided by the user in the file userjprobs.h. The system variables rlft(ij) 
and rrht(ij) are used only when the model is a controlled Markov chain, as 
described in this section. Evaluate the transition rate of a point x to its 
neighbors x - ejh in the array rlft(i,j) and to x + ejh in the array rrht(i,j) as 
follows: 

rlft(ij) = r(x.x — ejh\u), for j = l, ...,d 

and 

rrht(i,j) = r(x, x + ejh\u), for j=l,..., d. 

Note that the index i is used by the system as before for indexing the vector 
spatial representation of the grid data. It must be included in the file names, 
in order for the program to interpret the file properly. The dimensional index 
j must be specified by the user. The formulas for evaluating the transition 
rates can be as simple or complex as the model requires. 

The program uses the same format for the specification of the transition 
rates in the "diagonal" directions. Arrays rrht(ij) and rlft(i,j) are used for 
these values, where j=d+l,..., d+D, where D is just the binomial coefficient 
"choosing 2 out of d." In detail, the index j has the following meaning: 

• Dimension d=2: 
j = 3 for {ei,e2}, D=l, 

• Dimension d=3: 
j = 4,5,6 for {ei,e2}, {ei,e3}, {e2,e3}, respectively, D=3, 

• Dimension d=4: 
j = 5,6,7   for {ei,e2}, {ei,e3}, {ei,e4}, respectively, and 
j = 8,9,10 for {e2,e3}, {e2,e4}, {e3,e4}, respectively, D=6. 

For aim > 0, the off-coordinate axes transitions are assigned as 

rrht(i,j) = r(x,x + t\h + emh\u), for }=d + 1,... ,d + D 
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and 

rlft(i,j) = r(x, x - t\h - emh\u), for j=d + 1,..., d + D 

Otherwise for o\m < 0, the off-coordinate axes transitions are assigned as 

rrht(i,j) = r(x,x + t\h - emh\u), for ]=d + l,...,d+ D 

and 

rlft(i,j) = r(x,x - t\h + emh\u), for ]=d + 1,... ,d + D. 

8    Example: continuous Markov chain 

In this example we will use reflecting boundary conditions with a cost as- 
signed to the x2 overflow boundary. The transition rates are 

r(x,x + e2h\u) = X0(NP-x1 - x2) (1 - «i) 

r(x,x - e2h\u) = ß0 x2 ,„ ^ 

r(x,x + t\ — e2h\u)) = // x2 

r(x,x — e\ + e2h\u) = \x\ 

and the cost function is similiar to the correlated noise example but with the 
addition of the x2 boundary overflow cost term: 

Ev2U(\)+\\m^;E (   [c{l)Ul(s) + c(2)max[0,x2{s) - B]]ds. 
T    1       Jo 

Recall that the state space of the Markov chain is an h—grid. 

• user_drift.h: 

• user_covar.h: 

Comment: These files are left empty since they are unused by the code 
for the continuous time Markov chain model. The files must be present 
for the compilation process to succeed. 
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• user_probs.h: 

rrht(i,2) = lambdaO * (NP-x(l)-x(2)) * ( 1.0 - u(i,l) ) 
rlft(i,2) = muO * x(2) 
rrht(i,3) = mu * x(2) 
rlft(i,3) = lambda * x(l) 

Comment: The transition rates for rrht(i,2) and rlft(i,2) are easily 
coded. Since there are no transitions along the first coordinate direc- 
tion, we omit these zero-value assignments for efficiency. A covariance 
value au < 0. is needed since the off-coordinate axes transitions are 
in the southeast and northwest directions for rrht(i,3) and rlft(i,3), re- 

spectively. 

• user_cost.h: 

cost(i) = c(l)*u(i,l) + c(2)*max(0., x(2)-B) 

• user_var.h: 

real lambda, mu, lambdaO, muO, B 
integer NP 

common lambda, mu, lambdaO, muO, B, NP 

• userJn.h: 

write(STDERR,*) 'lambda mu lambdaO muO B NP ?' 
read(5,*) lambda, mu, lambdaO, muO, B, NP 

• user -out.h: 

write(6,*) 'lambda = ', lambda 
write(6,*) 'lambdaO = ', lambdaO 
write(6,*) ' mu = ', mu 
write(6,*) ' muO = ', muO 
write(6,*) ' B = ', B 
write(6,*) ' NP = ', NP 
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Comment: As in previous examples, we define the model variables and 
the necessary input and output statements so that our specific data 
will be read and subsequentially written for reference. 

• user_kbdout.h: 

write(KBD,*) lambda, mu, lambdaO, muO, B, NP 

Comment: This file provides the necessary statements for writing user- 
supplied data to the default output file input.prompted by utilizing the 
KBD descriptor for the WRITE statements. 

Again, it is important to note that the control coefficient matrix K with 
elements k(i,j) is not used for the continuous time Markov chain model as it 
was in the the diffusion models. Thus, input files for these models will not 
have data for the k(i,j) control coefficients. 

Sample input file for 2D continuous time Markov chain model 

2 ! program dimension 
0 50 ! number of mesh intervals (Af, A+) 
0 60 ! number of mesh intervals (A2~~, Aj") 
1 ! number of multigrid sublevels 
1                                          ! number of controls 
1 ! off-diagonal covariance terms (0 if false) 
0.1 ! mesh width h = 1/VTÖÖ 
0. 2. ! origin of the state space Ao 
772 ! run-time options 
4. 7. ! location of centering point Xc 

0. 0. ! covariance values for Un and a"i2 
0. ! covariance value for #"22 
0.5 ! maximum control value üi 
2 ! number of cost coefficients c(j) 
15. 2. ! values for cost coefficients c(j) 
.5 1. .1 .2 6.3 200 I \ fi A0 fi0 B NP 
0. 0. ! underflow cost coefficients: /i,/2 

0. 1. ! overflow cost coefficients: ^1,^2 
1. 0. ! pi, dimension 1 underflow reflection 
0. 1. ! P2, dimension 2 underflow reflection 
-1. 0. ! #1, dimension 1 overflow reflection 
0. -1. ! q2, dimension 2 overflow reflection 
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0. ! discounted cost factor 
50 ! maximum policy updating steps 
.00000001 ! stopping criterion tolerance 
5 5 ! number of relaxations per multigrid level 
1.0 1.0 ! overrelaxation parameter for each level 

Absorbing boundary. The absorbing boundary for a continuous Markov 
chain follows exactly the same format as the diffusion model case. One need 
not specify the reflection directions pt and <?; and reflection costs /,- and vl 

but the file for the boundary cost g{x) must be provided as before. 
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